
Radio chirp data incorporated
in an MQTT environment

BY LARS 26 OCTOBER, 2016

Internet-of-things does not require that every device has to be directly

connected to the Internet. The complexity and possible security issues with

every sensor having its own IP address would in fact be overwhelming. A better

approach would be to use more light-weight protocols for the sensor and

actuator data and locally aggregate and �lter these data at common points

before making them available on the Internet. In this post I will describe a theory

and implementation of transmitting small radio chirp messages from an Arduino

Pro mini and then receive these data on a Raspberry Pi for transformation to

MQTT messages for the Internet.

MENU

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

1 of 24 1/15/2024, 10:39 AM

https://thingsmatic.com/author/larsgbergqvist/
https://thingsmatic.com/author/larsgbergqvist/
https://thingsmatic.com/author/larsgbergqvist/
https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/
https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/
https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/
https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?blogid=97872935&blogsub=confirmed#header-menu-responsive
https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?blogid=97872935&blogsub=confirmed#header-menu-responsive
https://thingsmatic.com/
https://thingsmatic.com/

Background

For some time now, I have experimented with IoT-nodes at home for doing

automation and collecting data. With empirical learning from this, I have found a

way to scale IoT-nodes in a simple, pragmatic and inexpensive way. Meanwhile I

have also read Rethinking the Internet of things by Francis daCosta:

It contains a more extensive and formalized description of parts that I found out

by experience, so I will borrow some terminology from this book. BTW, the book

is worth reading and you can get the ebook edition for free from ApressOpen:

 http://www.apress.com/gp/book/9781430257400

An example architecture for collecting sensor data

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

2 of 24 1/15/2024, 10:39 AM

http://www.apress.com/gp/book/9781430257400
http://www.apress.com/gp/book/9781430257400

Data (e.g. temperature) is collected by a sensor connected to an IoT end device

(e.g. an Arduino board) – they are at the far end of the IoT network – and several

sensors can be attached to the same device. The end device makes a minimal

chirp message of the data and broadcasts it wirelessly. Simple devices can use

radio messages (I use 433MHz transmitters) and more complex end devices (like

an ESP8266 board) can publish messages over WiFi.

The 433 MHz radio protocol has no acknowledge of received data, so missed or

duplicated messages on the receiver side can happen. Thus, this light-weight

communication protocol suites scenarios where the data is non-critical. For

example, if we have a device that broadcasts the current indoor house

temperature every 15 minutes, a missed or duplicated data point is unlikely to

cause any trouble or disasters.

IoT propagator nodes listens for chirp messages, �lters/selects data of interest,

aggregates it and make a transform into MQTT IP packages for the local

network. A higher-level propagator node subscribes to these messages and

when receiving data it executes some actions. The actions could be further

propagation of the message from the LAN to Internet and/or store the data

locally.

So, the main idea is to use as simple end devices/sensor nodes as possible and

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

3 of 24 1/15/2024, 10:39 AM

then propagate the information upwards in the “value chain” where more

advanced handling of the data can be added at every step.

The collected data can be consumed by mobile devices by accessing a web

application on the local LAN or by interacting with a cloud service (e.g. Adafruit

IO) that has got a copy of the data. This is the �nal step where the most advanced

node (a human being) analyzes the data.

My implementation of an IoT-architecture for sensor data

I have covered local MQTT environments in some previous posts, so I will not go

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

4 of 24 1/15/2024, 10:39 AM

into detail about subscribers and publishers here. Check out these texts instead:

• A self-hosted MQTT environment for IoT – part 1

• A self-hosted MQTT environment for IoT – part 2

• A self-hosted MQTT environment for IoT – part 3

An example implementation

As an example implementation I will use an Arduino Pro Mini (3.3V edition) as

IoT-end device. It uses a BMP180 pressure/temperature sensor and has a 433

MHz radio transmitter. I chose this Arduino model as it can easily be made to

consume very little power when idling. By using a sleep library and removing the

“on”-led on the board, the required current while idling is only 0.25mA – that’s ok

for running the device on batteries. The power consumption can be reduced

even further, but for my purpose, this is suf�cient.

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

5 of 24 1/15/2024, 10:39 AM

https://larsbergqvist.wordpress.com/2016/06/24/a-self-hosted-mqtt-environment-for-internet-of-things-part-1/
https://larsbergqvist.wordpress.com/2016/06/24/a-self-hosted-mqtt-environment-for-internet-of-things-part-1/
https://larsbergqvist.wordpress.com/2016/06/24/a-self-hosted-mqtt-environment-for-internet-of-things-part-2/
https://larsbergqvist.wordpress.com/2016/06/24/a-self-hosted-mqtt-environment-for-internet-of-things-part-2/
https://larsbergqvist.wordpress.com/2016/06/26/a-self-hosted-mqtt-environment-for-internet-of-things-part-3/
https://larsbergqvist.wordpress.com/2016/06/26/a-self-hosted-mqtt-environment-for-internet-of-things-part-3/

Arduino Pro Mini 3.3V, BMP180 and 433MHz transmitter

The cost for this IoT-end device is:

Arduino Pro Mini 3.3V (OpenSmart) = $4

BMP180 sensor (Keyestudio) = $4

433 MHz transmitter (noname) = $3

battery holder + wires = $3

That is, around $14 in total, and the parts can be reused for other projects (I have

not included my re-chargeable AA-batteries in the budget above as I expect to be

using them for several hundred charge cycles).

The propagator nodes are implemented as services with Python on a Raspberry

Pi 3. The RPi has a 433 MHz receiver and WiFi connected to the local LAN.

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

6 of 24 1/15/2024, 10:39 AM

Raspberry Pi 3 with radio transmitter and receiver

My RPi 3 is setup with a 433 MHz receiver and a transmitter. The transmitter is

used for sending data to IoT-nodes with actuators, but as this post is about a

sensor scenario, I will not cover the RPi transmitter in this text (if you are curious,

you can read more in this post https://larsbergqvist.wordpress.com/2016/05

/15/rcswitch-revisited-control-rc-outlets-with-a-web-app/).

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

7 of 24 1/15/2024, 10:39 AM

https://larsbergqvist.wordpress.com/2016/05/15/rcswitch-revisited-control-rc-outlets-with-a-web-app/
https://larsbergqvist.wordpress.com/2016/05/15/rcswitch-revisited-control-rc-outlets-with-a-web-app/
https://larsbergqvist.wordpress.com/2016/05/15/rcswitch-revisited-control-rc-outlets-with-a-web-app/
https://larsbergqvist.wordpress.com/2016/05/15/rcswitch-revisited-control-rc-outlets-with-a-web-app/

The 433 MHz communication protocol

The data that is sent over 433 MHz radio is handled by the RCSwitch library on

the Arduino and the pi-switch library on the Raspberry Pi. These libraries

support sending and receiving data to/from RC outlets and remote controls but

can be used for other purposes. I have used the libraries in previous posts for

communication between devices, for example in this one:

https://larsbergqvist.wordpress.com/2016/03/20/arduino-to-raspberry-

wireless-communication-some-improvements/

RCSwitch uses 32 bits / 4 bytes for a message – this is my chirp! I only use two

bytes for the actual sensor data, the other two bytes are used for data

identi�cation and a checksum.

My chirp can contain an encoded unsigned two byte integer value from a sensor.

The whole 32 bit message looks like this in that case:

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

8 of 24 1/15/2024, 10:39 AM

https://github.com/sui77/rc-switch
https://github.com/sui77/rc-switch
https://github.com/lexruee/pi-switch-python
https://github.com/lexruee/pi-switch-python
https://larsbergqvist.wordpress.com/2016/03/20/arduino-to-raspberry-wireless-communication-some-improvements/
https://larsbergqvist.wordpress.com/2016/03/20/arduino-to-raspberry-wireless-communication-some-improvements/
https://larsbergqvist.wordpress.com/2016/03/20/arduino-to-raspberry-wireless-communication-some-improvements/
https://larsbergqvist.wordpress.com/2016/03/20/arduino-to-raspberry-wireless-communication-some-improvements/

Thus, sensor values between 0 and 65535 can be sent.

My protocol also supports sending signed �oat values with two decimals. In that

case I multiply the value by 100 and store the data in two bytes. The highest bit is

a sign �ag that indicates if the value is positive or negative. This way, �oat values

between -327,67 and +327,67 can be sent.

By looking at the sensor id, the receiver knows if the data should be treated as an

unsigned integer or a signed �oat value (so the sender and the receiver have to

agree on what the different sensor id:s mean). By extending the sender- and

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

9 of 24 1/15/2024, 10:39 AM

receiver side, additional data types can be implemented – e.g. a signed two byte

integer (values between -32767 and +32767).

Arduino implementation

The sketch for the Arduino Pro Mini in the Arduino IDE looks like this:

1 //

2 // An Arduino sketch for an IoT node that broadcasts sensor values via

3 // 433 MHz radio signals

4 // The RCSwitch library is used for the transmissions

5 // The Narcopleptic library is used for power save during delay

6 // Sensor values are fetched from an BPM180/085 sensor via i2C

7 //

8

9 #include <Wire.h>

10 #include <Adafruit_BMP085.h>

11 #include "RCSwitch.h"

12 #include <Narcoleptic.h>

13

14 #define CLIENT_NAME "TopFloorClient"

15 #define TX_PIN 10 // PWM output pin to use for transmission

16

17 //

18 // Sensor setup

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

10 of 24 1/15/2024, 10:39 AM

19 // The BMP085 module measure ait pressure and temperature and operates via i2C

20 //

21 Adafruit_BMP085 bmp; // pin 4, SDA (data), pin 5, SLC (clock)

22

23 //

24 // Data transmission setup

25 //

26 #define TOPFLOOR_TEMP_ID 1

27 #define BMP_PRESSURE_ID 2

28 RCSwitch transmitter = RCSwitch();

29

30 void setup()

31 {

32 Serial.begin(9600);

33

34 bmp.begin();

35

36 transmitter.enableTransmit(TX_PIN);

37 transmitter.setRepeatTransmit(25);

38 }

39

40 unsigned long seqNum=0;

41 void loop()

42 {

43 float temp = bmp.readTemperature();

44 Serial.print("Temperature = ");

45 Serial.print(temp);

46 Serial.println(" *C");

47

48 unsigned int encodedFloat = EncodeFloatToTwoBytes(temp);

49 unsigned long dataToSend = Code32BitsToSend(TOPFLOOR_TEMP_ID,seqNum,encodedFloat);

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

11 of 24 1/15/2024, 10:39 AM

50 TransmitWithRepeat(dataToSend);

51

52 float pressure = bmp.readPressure();

53 unsigned int pressureAsInt = pressure/100;

54 Serial.print("Pressure = ");

55 Serial.print(pressureAsInt);

56 Serial.println(" hPa");

57 dataToSend = Code32BitsToSend(BMP_PRESSURE_ID,seqNum,pressureAsInt);

58 TransmitWithRepeat(dataToSend);

59

60 for (int i=0; i< 100; i++)

61 {

62 // Max narcoleptic delay is 8s

63 Narcoleptic.delay(8000);

64 }

65

66 seqNum++;

67 if (seqNum > 15)

68 {

69 seqNum = 0;

70 }

71 }

72

73

74 unsigned long Code32BitsToSend(int measurementTypeID, unsigned long seq, unsigned long data)

75 {

76 unsigned long checkSum = measurementTypeID + seq + data;

77 unsigned long byte3 = ((0x0F & measurementTypeID) << 4) + (0x0F & seq);

78 unsigned long byte2_and_byte_1 = 0xFFFF & data;

79 unsigned long byte0 = 0xFF & checkSum;

80 unsigned long dataToSend = (byte3 << 24) + (byte2_and_byte_1 << 8) + byte0;

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

12 of 24 1/15/2024, 10:39 AM

view raw

81

82 return dataToSend;

83 }

84

85 // Encode a float as two bytes by multiplying with 100

86 // and reserving the highest bit as a sign flag

87 // Values that can be encoded correctly are between -327,67 and +327,67

88 unsigned int EncodeFloatToTwoBytes(float floatValue)

89 {

90 bool sign = false;

91

92 if (floatValue < 0)

93 sign=true;

94

95 int integer = (100*fabs(floatValue));

96 unsigned int word = integer & 0XFFFF;

97

98 if (sign)

99 word |= 1 << 15;

100

101 return word;

102 }

103

104 void TransmitWithRepeat(unsigned long dataToSend)

105 {

106 transmitter.send(dataToSend, 32);

107 Narcoleptic.delay(2000);

108 transmitter.send(dataToSend, 32);

109 Narcoleptic.delay(2000);

110 }

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

13 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683/raw/7deb4d45a1d5978c6c21e61ee0278b6bafa1d5d9/TopFloorClient_RC_433MHz.ino

TopFloorClient_RC_433MHz.ino

hosted with ��� by GitHub

The sketch uses the Narcoleptic library to save power while idling. As the

maximum delay time for this library is 8 seconds, I need a loop around repeated

delay calls to achieve an idling time of around 15 minutes.

The rolling sequence number for each measurement is used so that the receiver

can detect duplicate data. To increase the likelihood of a message reaching the

receiver, the message is sent several times. If a receiver gets a sequence of

identical data (including the same sequence number), then it knows that the

messages are duplicates and not just the same sensor values sent at different

points in time.

Raspberry Pi implementation

For the propagator node implementation, there are some prerequisites:

• Python 2.* installed

• The Python pi-switch library installed

• A running MQTT broker somewhere (I use a mosquitto broker running on

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

14 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683#file-topfloorclient_rc_433mhz-ino
https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683#file-topfloorclient_rc_433mhz-ino
https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683#file-topfloorclient_rc_433mhz-ino
https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683#file-topfloorclient_rc_433mhz-ino
https://gist.github.com/LarsBergqvist/0c8ac6623a47bbe3c9b2e61934dd7683#file-topfloorclient_rc_433mhz-ino
https://github.com/
https://github.com/
https://github.com/lexruee/pi-switch-python
https://github.com/lexruee/pi-switch-python
https://mosquitto.org/
https://mosquitto.org/

view raw

the Raspberry Pi)

I have a PropagatorApplication that acts as an IoT-propagator node. It is started

with a runserver.py script:

runserver.py

hosted with ��� by GitHub

The script initializes the application with the pin to use for the 433 MHz receiver

and the address for the broker where the transformed messages should be

published.

1 #!/usr/bin/env python

2 from propagatornode.propagatorapplication import PropagatorApplication

3

4 if __name__ == '__main__':

5 wiringPiPinForReceiver = 2

6 brokerIP = "192.168.1.16"

7 brokerPort = 1883

8 app = PropagatorApplication(wiringPiPinForReceiver,brokerIP,brokerPort)

9 app.run()

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

15 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4/raw/3f9896ed9b8f43871d7f4c1aab1cc545203bdef9/runserver.py
https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4#file-runserver-py
https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4#file-runserver-py
https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4#file-runserver-py
https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4#file-runserver-py
https://gist.github.com/LarsBergqvist/c882b8d1e8a6dd506066ca7cad2a61e4#file-runserver-py
https://github.com/
https://github.com/

The application de�nes what chirp messages to listen to and what MQTT topic

they should be mapped to. A RadioListener class is used for fetching and

decoding the radio chirp messages and an MQTTpublisher class is used for

publishing the transformed message:

1 #

2 # A propagator node in an MQTT System

3 # It listens on messages/chirps via 433MHz radio and translates them to

4 # MQTT packages that are published over TCP/IP to a broker

5 #

6

7 from measurementtype import MeasurementType

8 from MQTTpublisher import MQTTpublisher

9 from radiolistener import RadioListener

10 import time

11

12 class PropagatorApplication:

13

14 wiringPiPinForReceiver = 2

15 brokerIP = ""

16 brokerPort = 1883

17

18 def __init__(self,wiringPiPinForReceiver,brokerIP,brokerPort):

19 self.wiringPiPinForReceiver = wiringPiPinForReceiver

20 self.brokerIP = brokerIP

21 self.brokerPort = brokerPort

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

16 of 24 1/15/2024, 10:39 AM

view raw

propagatorapplication.py

hosted with ��� by GitHub

The RadioListener uses pi-switch for listening to radio messages and doing the

22

23 def run(self):

24 # Defines the radio listener that uses pi-switch to listen to messages

25 # over 433 MHz radio

26 validMeasurementTypes = [

27 MeasurementType(1,"Temp","float","Home/TopFloor/Temperature"),

28 MeasurementType(2,"Pressure(hPa)","int","Home/TopFloor/Pressure"),

29 MeasurementType(3,"DoorOpened","int","Home/FrontDoor/Status")

30]

31

32 radioListener = RadioListener(self.wiringPiPinForReceiver,validMeasurementTypes)

33

34 # Defines the publisher that publishes MQTT messages to a broker

35 publisher = MQTTpublisher(self.brokerIP,self.brokerPort)

36

37 while True:

38 if radioListener.newMessageAvailable():

39 message = radioListener.getLatestMessage()

40 if message is not None:

41 # Take the radio message and publish the data as an MQTT message

42 publisher.postMessage(message.getTopic(),str(message.getValue()))

43

44 time.sleep(1)

45

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

17 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97/raw/07bffe0a9eb26d57490b4ecf15dcc738e3b48282/propagatorapplication.py
https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97#file-propagatorapplication-py
https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97#file-propagatorapplication-py
https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97#file-propagatorapplication-py
https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97#file-propagatorapplication-py
https://gist.github.com/LarsBergqvist/80b06eb89639bf36962e1d55746feb97#file-propagatorapplication-py
https://github.com/
https://github.com/

bit operations needed for decoding a message:

1 from radiomessage import RadioMessage

2 from measurementtype import MeasurementType

3 from pi_switch import RCSwitchReceiver

4

5 class RadioListener:

6 validMeasurementTypes = []

7 previousValue = 0

8 numIdenticalValuesInARow = 0

9 latestMessage = None

10 receiver = RCSwitchReceiver()

11

12 def __init__(self,wiringPiPinForReceiver,validMeasurementTypes):

13 wiringPiPinForReceiver

14 self.validMeasurementTypes = validMeasurementTypes

15 self.receiver.enableReceive(wiringPiPinForReceiver)

16

17 def newMessageAvailable(self):

18

19 if self.receiver.available():

20 value = self.receiver.getReceivedValue()

21 self.latestMessage = self.getMessageFromDecodedValue(value)

22 self.receiver.resetAvailable()

23

24 if (self.latestMessage is None):

25 return False

26 else:

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

18 of 24 1/15/2024, 10:39 AM

27 return True

28

29 def getMessageFromDecodedValue(self,value):

30 if value == self.previousValue:

31 self.numIdenticalValuesInARow += 1

32 else:

33 self.numIdenticalValuesInARow = 1

34

35 # decode byte3

36 byte3 = (0xFF000000 & value) >> 24

37 typeID = int((0xF0 & byte3) >> 4)

38 seqNum = int((0x0F & byte3))

39

40 # decode byte2 and byte1

41 data = int((0x00FFFF00 & value) >> 8)

42

43 # decode byte0

44 checkSum = int((0x000000FF & value))

45

46 # calculate simple check sum

47 calculatedCheckSum = 0xFF & (typeID + seqNum + data)

48

49 # Sanity checks on received data

50 correctData = True

51 if calculatedCheckSum != checkSum:

52 correctData = False

53 elif seqNum > 15:

54 correctData = False

55

56 message = None

57 if correctData:

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

19 of 24 1/15/2024, 10:39 AM

view raw

radiolistener.py

hosted with ��� by GitHub

The MQTTpublisher class wraps the code needed for publishing a message to an

MQTT broker:

58 self.previousValue = value

59 if self.numIdenticalValuesInARow == 2:

60 # only store a value if an identical value was detected twice

61 # if detected more than two times, ignore the value

62 measurementType = self.getMeasurementTypeFromId(typeID)

63 if measurementType is None:

64 # invalid typeID

65 print("Invalid type id")

66 self.latestMessage = None

67 else:

68 message = RadioMessage(measurementType, data)

69

70 return message

71

72 def getMeasurementTypeFromId(self,typeID):

73 measurementType = next(i for i in self.validMeasurementTypes if i.id == typeID)

74 return measurementType

75

76 def getLatestMessage(self):

77 return self.latestMessage

78

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

20 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924/raw/3edb4c72067b7634656a24eafbb0accbe4742c3f/radiolistener.py
https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924#file-radiolistener-py
https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924#file-radiolistener-py
https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924#file-radiolistener-py
https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924#file-radiolistener-py
https://gist.github.com/LarsBergqvist/d3d1a8832e75dc1441e198acf73bb924#file-radiolistener-py
https://github.com/
https://github.com/

1 import paho.mqtt.client as mqtt

2 import time

3

4 class MQTTpublisher:

5 brokerIP = ""

6 brokerPort = 0

7 def __init__(self,brokerIP,brokerPort):

8 self.brokerIP = brokerIP

9 self.brokerPort = brokerPort

10

11 def postMessage(self,topic,message):

12 print("Publishing message " + message + " on topic " + topic)

13 # Initialize the client that should connect to the Mosquitto broker

14 client = mqtt.Client()

15 connOK=False

16 print("Connecting to " + self.brokerIP + " on port " + str(self.brokerPort))

17 while(connOK == False):

18 try:

19 print("try connect")

20 client.connect(self.brokerIP, self.brokerPort, 60)

21 connOK = True

22 except:

23 connOK = False

24 time.sleep(2)

25

26 client.publish(topic,message)

27 print("Publish done")

28 client.disconnect()

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

21 of 24 1/15/2024, 10:39 AM

view raw

MQTTpublisher.py

hosted with ��� by GitHub

The complete code for this experiment can be fetched from GitHub:

https://github.com/LarsBergqvist/IoT_chirps_to_MQTT

Conclusions

Using an IoT-end device without IP connection has several bene�ts. It is less

expensive and consumes less power than a device with a TCP/IP-stack. The

device is also resilient to hacking (the radio messages can be compromised, but

depending on the application and the smartness of the propagator nodes, this

might not be an issue).

By aggregating and �ltering data from many devices at one or a few propagator

nodes, it is easier to adapt the system (what messages to actually store etc) and

let’s you have one single point where data are pushed out to the Internet (this

approach is bene�cial regardless if TCP/IP or radio messages are used for the

IoT-end devices).

29

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

22 of 24 1/15/2024, 10:39 AM

https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d/raw/8e7effe46927729545249f54e180dd5c7f0c81ce/MQTTpublisher.py
https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d#file-mqttpublisher-py
https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d#file-mqttpublisher-py
https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d#file-mqttpublisher-py
https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d#file-mqttpublisher-py
https://gist.github.com/LarsBergqvist/a80f0eae0d63814410a9e9f9ed06243d#file-mqttpublisher-py
https://github.com/
https://github.com/
https://github.com/LarsBergqvist/IoT_chirps_to_MQTT
https://github.com/LarsBergqvist/IoT_chirps_to_MQTT

View all posts by Lars

Due to the simplicity of the proposed radio protocol, it will not suite all

applications. To send larger chunks of data, a more complex end device is needed.

But, when a large “swarm” of devices for simple measurements is needed, I prefer

using radio-based IoT-end devices.

POSTED IN ARDUINO, C++, ELECTRONICS, IOT, MQTT, PYTHON, RADIO, RASPBERRY

PI, TINKERING •

TAGGED 433 MHZ, ARDUINO PRO MINI, BMP180, I2C, IOT, IOT ARCHITECTURE, IOT

CHIRP MESSAGE, IOT-NODE, LOW-COST IOT-NODE, LOW-POWER IOT-NODE, MQTT,

PI-SWITCH, PROPAGATOR NODE, PYTHON, RASPBERRY PI, RCSWITCH, RETHINKING

THE INTERNET OF THINGS, SELF-HOSTED IOT, TELEMETRY

Published by Lars

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

23 of 24 1/15/2024, 10:39 AM

https://thingsmatic.com/author/larsgbergqvist/
https://thingsmatic.com/author/larsgbergqvist/
https://thingsmatic.com/tag/arduino/
https://thingsmatic.com/tag/arduino/
https://thingsmatic.com/category/c-2/
https://thingsmatic.com/category/c-2/
https://thingsmatic.com/tag/electronics/
https://thingsmatic.com/tag/electronics/
https://thingsmatic.com/category/iot/
https://thingsmatic.com/category/iot/
https://thingsmatic.com/tag/mqtt/
https://thingsmatic.com/tag/mqtt/
https://thingsmatic.com/tag/python/
https://thingsmatic.com/tag/python/
https://thingsmatic.com/category/radio/
https://thingsmatic.com/category/radio/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/category/tinkering/
https://thingsmatic.com/category/tinkering/
https://thingsmatic.com/tag/433-mhz/
https://thingsmatic.com/tag/433-mhz/
https://thingsmatic.com/tag/arduino-pro-mini/
https://thingsmatic.com/tag/arduino-pro-mini/
https://thingsmatic.com/tag/bmp180/
https://thingsmatic.com/tag/bmp180/
https://thingsmatic.com/tag/i2c/
https://thingsmatic.com/tag/i2c/
https://thingsmatic.com/tag/iot/
https://thingsmatic.com/tag/iot/
https://thingsmatic.com/tag/iot-architecture/
https://thingsmatic.com/tag/iot-architecture/
https://thingsmatic.com/tag/iot-chirp-message/
https://thingsmatic.com/tag/iot-chirp-message/
https://thingsmatic.com/tag/iot-chirp-message/
https://thingsmatic.com/tag/iot-chirp-message/
https://thingsmatic.com/tag/iot-node/
https://thingsmatic.com/tag/iot-node/
https://thingsmatic.com/tag/low-cost-iot-node/
https://thingsmatic.com/tag/low-cost-iot-node/
https://thingsmatic.com/tag/low-power-iot-node/
https://thingsmatic.com/tag/low-power-iot-node/
https://thingsmatic.com/tag/mqtt/
https://thingsmatic.com/tag/mqtt/
https://thingsmatic.com/tag/pi-switch/
https://thingsmatic.com/tag/pi-switch/
https://thingsmatic.com/tag/propagator-node/
https://thingsmatic.com/tag/propagator-node/
https://thingsmatic.com/tag/python/
https://thingsmatic.com/tag/python/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/tag/raspberry-pi/
https://thingsmatic.com/tag/rcswitch/
https://thingsmatic.com/tag/rcswitch/
https://thingsmatic.com/tag/rethinking-the-internet-of-things/
https://thingsmatic.com/tag/rethinking-the-internet-of-things/
https://thingsmatic.com/tag/rethinking-the-internet-of-things/
https://thingsmatic.com/tag/rethinking-the-internet-of-things/
https://thingsmatic.com/tag/self-hosted-iot/
https://thingsmatic.com/tag/self-hosted-iot/
https://thingsmatic.com/tag/telemetry/
https://thingsmatic.com/tag/telemetry/

PREV

Processing and Arduino
NEXT

Preparing the remote control

app for Christmas


One thought

Pingback: A sensor monitor with OLED in MicroPython – Thinkering & Tinkering

Leave a Reply

H O M E A B O U T L A R S M U S I C P R O J E C T S L A R S O N G I T H U B

L A R S O N L I N K E D I N

Blog at WordPress.com.

Radio chirp data incorporated in an MQTT environment – Thingsmatic https://thingsmatic.com/2016/10/26/radio-chirp-data-incorporated-in-an-mqtt-environment/?bl...

24 of 24 1/15/2024, 10:39 AM

https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/10/07/processing-and-arduino/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://thingsmatic.com/2016/11/03/preparing-the-remote-control-app-for-christmas/
https://larsbergqvist.wordpress.com/2016/12/03/a-sensor-monitor-with-oled-in-micropython/
https://larsbergqvist.wordpress.com/2016/12/03/a-sensor-monitor-with-oled-in-micropython/
https://larsbergqvist.wordpress.com/
https://larsbergqvist.wordpress.com/
https://thingsmatic.com/om/
https://thingsmatic.com/om/
https://thingsmatic.com/portfolio/music/
https://thingsmatic.com/portfolio/music/
https://github.com/LarsBergqvist/
https://github.com/LarsBergqvist/
https://www.linkedin.com/in/LarsBergqvist/
https://www.linkedin.com/in/LarsBergqvist/
https://wordpress.com/?ref=footer_blog
https://wordpress.com/?ref=footer_blog

